فضای ایده آل ماکسیمال جبرهای دیلز-دیوی توابع بینهایت بار مشتق پذیر

پایان نامه
چکیده

فرض کنیم xیک مجموعه ی صفحه ای فشرده کامل باشدو mدنباله ای از اعداد حقیقی مثبت بوده به طوری کهm0=1 و mn/mn-kmk بزرگتر مساوی از ترکیب k از m باشد در این صورت جبرتمام توابع بینهایت بار مشتق پذیر بر مجموعه x را که در شرط زیر صدق می کند را با(d(x,m نشان می دهیم . ?_(k=0)^??(||f^((n)) ||)/m_n <? در این پایان نامه برخی از خواص جبرهای لیپشیتس نیز توسیع داده می شود

منابع مشابه

درونریختی های فشرده یکانی جبرهای لیپشیتس توابع بینهایت بار مشتق پذیر

در این پایان نامه با فرض این که (x,d)یک فضای متری فشرده باشد، به معرفی و بیان برخی از ویژگی های جبرهای لیپشیتس lip(x, ?) برای 0<??1 و جبرهای کوچک لیپشیتس lip(x, ?) برای 0<?<1 پرداخته و همین طور برای دنباله ی وزنی {m_n } ?(?@n=0) m=به معرفی جبرهای لیپشیتس توابع بینهایت بار مشتق پذیر lip(x, m, ?) برای 0<??1 و lip(x, m, ?) برای 0<?<1 می پردازیم. در ادامه درونریختی ها و درونریختی های فشرده ی جبرهای...

15 صفحه اول

فضای ایده آل ماکسیمال جبرهای یکنواخت گویاوچندجمله ای های توسعه یافته

فرض کنید aجبر باناخ جابجایی باشد. تابعک خطی در صورتی که برای همئومورفیسم مختلط است. هرگاه یک همئومورفیسم مختلط روی a باشد و برای در اینصورت همئومورفیسم مختلط غیر صفر یا تابعک خطی ضربی روی a نامیده می شود. هر همئومورفیسم مختلط روی a پیوسته است [2]. در صورتی که a یکدار باشد، a کوچکترین همئومورفیسم مختلط غیر صفر می باشد و به ازای هر روی a. را مجموعه ی همه ی همئومورفیسم های مختلط غیر صفر روی a نام...

مشتق نسبت به دوگان ایده آل بسته جبرهای باناخ

فرض کنید a یک جبر باناخ باشد. ما در این پایان نامه ایده آل های بسته i از a که اولین گروه کوهمولوژی از a با ضرایبی در i^* است را مطالعه می کنیم یعنی 0=( a,i^*) h^1 . همچین ایده آل های بسته را وقتی a میانگین پذیر ضعیف یا دوهمواری است و نیز بعضی خواص ارثی ایده آل های میانگین پذیر را بررسی می کنیم.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023